CF1458C Latin Square
CF1458C Latin Square
这里说一下逆排序就是如果说原来位置 $i$ 的数是 $p_i$ 那么现在位置 $p_i$ 的数就是 $i$。
直接变成三元组 $(i, j, a_{i, j})$ 也就是所有有关的信息。
之后直接记录并且修改即可,复杂度是 $O(n^2 + m)$ 的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
| #include <bits/stdc++.h> using namespace std;
#ifdef Fread char buf[1 << 21], *iS, *iT; #define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++) #define getchar gc #endif
template <typename T> void r1(T &x) { x = 0; char c(getchar()); int f(1); for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1; for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48); x *= f; }
template <typename T,typename... Args> inline void r1(T& t, Args&... args) { r1(t); r1(args...); }
#ifdef Getmod const int mod = 1e9 + 7; template <int mod> struct typemod { int z; typemod(int a = 0) : z(a) {} inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);} inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);} inline int mul(int a,int b) const {return 1ll * a * b % mod;} typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));} typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));} typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));} typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;} typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;} typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;} int operator == (const typemod<mod> &x) const {return x.z == z;} int operator != (const typemod<mod> &x) const {return x.z != z;} }; typedef typemod<mod> Tm; #endif
const int maxn = 1e3 + 5; const int maxm = maxn << 1;
int pos[4], n, m, sum[4]; int ans[maxn][maxn]; int a[maxn * maxn][3];
char s[maxn * 100];
int id(int x,int y) { return (x - 1) * n + y; }
void solve() { int i, j; r1(n, m); for(i = 0; i <= 2; ++ i) pos[i] = i, sum[i] = 0; for(i = 1; i <= n; ++ i) { for(j = 1; j <= n; ++ j) { r1(a[id(i, j)][2]); a[id(i, j)][0] = i, a[id(i, j)][1] = j; } } scanf("%s", s + 1); for(i = 1; i <= m; ++ i) { char c = s[i]; if(c == 'U') -- sum[pos[0]]; if(c == 'D') ++ sum[pos[0]]; if(c == 'L') -- sum[pos[1]]; if(c == 'R') ++ sum[pos[1]]; if(c == 'I') swap(pos[1], pos[2]); if(c == 'C') swap(pos[0], pos[2]); } for(i = 1; i <= n * n; ++ i) { for(j = 0; j <= 2; ++ j) a[i][j] = (a[i][j] + sum[j] - 1 + m * n) % n + 1; ans[a[i][pos[0]]][a[i][pos[1]]] = a[i][pos[2]]; } for(i = 1; i <= n; ++ i) { for(j = 1; j <= n; ++ j) printf("%d ", ans[i][j]); puts(""); } }
signed main() {
int i, j, T; r1(T); while(T --) solve(); return 0; }
|