USACO - Cu - T1

发现翻转是改变一个区间的奇偶性,其声明只能对于偶数位置进行前缀区间翻转,所以考虑直接对于相邻两个数进行考虑。

翻转只会对于两个位置不同生效,考虑对于连续的一段一起翻转即可。

翻转贡献可能为 $1, 2$。看是否是一个前缀的形式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;

namespace Legendgod {
namespace Read {
// #define Fread
#ifdef Fread
const int Siz = (1 << 21) + 5;
char *iS, *iT, buf[Siz];
#define gc() ( iS == iT ? (iT = (iS = buf) + fread(buf, 1, Siz, stdin), iS == iT ? EOF : *iS ++) : *iS ++ )
#define getchar gc
#endif
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
template <typename T, typename...Args>
void r1(T &x, Args&...arg) {
r1(x), r1(arg...);
}
#undef getchar
}

using namespace Read;

const int maxn = 2e5 + 5;
int n, m;
char s[maxn];

signed main() {
int i, j;
r1(n);
scanf("%s", s + 1);
if(n & 1) -- n;
int res(0), fl(0);
for(i = n; i >= 1; i -= 2) {
if(s[i] == s[i - 1]) { continue; }
if(s[i - 1] == 'G') { if(!fl) ++ res, fl = 1; }
else res += fl, fl = 0;
}
printf("%d\n", res);
return 0;
}
/*
14
HGGHGHHGHHHGHG

2
*/

}


signed main() { return Legendgod::main(), 0; }//


USACO - Cu - T2

直接暴力枚举位置即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;

namespace Legendgod {
namespace Read {
// #define Fread
#ifdef Fread
const int Siz = (1 << 21) + 5;
char *iS, *iT, buf[Siz];
#define gc() ( iS == iT ? (iT = (iS = buf) + fread(buf, 1, Siz, stdin), iS == iT ? EOF : *iS ++) : *iS ++ )
#define getchar gc
#endif
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
template <typename T, typename...Args>
void r1(T &x, Args&...arg) {
r1(x), r1(arg...);
}
#undef getchar
}

using namespace Read;

const int maxn = 2e5 + 5;
int n, m;
struct Node {
int opt, x;
int operator < (const Node &z) const { return x < z.x; }
}a[maxn];

char c[10];

signed main() {
int i, j;
r1(n);
for(i = 1; i <= n; ++ i) {
scanf("%s", c + 1), r1(a[i].x);
if(c[1] == 'L') a[i].opt = 0;
else a[i].opt = 1;
}
sort(a + 1, a + n + 1);
int res(2e9);
for(i = 1; i <= n; ++ i) {
int x = a[i].x, sum(0);
for(j = 1; j <= n; ++ j) {
if(a[j].opt == 0) { if(x <= a[j].x) ; else ++ sum; }
else { if(x >= a[j].x) ; else ++ sum; }
}
res = min(res, sum);
}
printf("%d\n", res);
return 0;
}

}


signed main() { return Legendgod::main(), 0; }//


USACO - Cu - T3

蠢题。

直接可以想到使用拓扑排序将标记下放,发现直接全部下放数太大了承受不住。

发现 $a_i$ 值域很小,可以考虑一个一个合成 $n$ 即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;

namespace Legendgod {
namespace Read {
// #define Fread
#ifdef Fread
const int Siz = (1 << 21) + 5;
char *iS, *iT, buf[Siz];
#define gc() ( iS == iT ? (iT = (iS = buf) + fread(buf, 1, Siz, stdin), iS == iT ? EOF : *iS ++) : *iS ++ )
#define getchar gc
#endif
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
template <typename T, typename...Args>
void r1(T &x, Args&...arg) {
r1(x), r1(arg...);
}
#undef getchar
}

using namespace Read;
#define int long long
const int maxn = 1e6 + 5;
int n, m, a[maxn], f[maxn];
int head[maxn], cnt(1);
struct Edge {
int to, next;
}edg[maxn << 1];
int deg[maxn];
void add(int u,int v) {
edg[++ cnt] = (Edge) {v, head[u]}, head[u] = cnt;
++ deg[v];
}

queue<int> q;
vector<int> dn;

signed main() {
int i, j;
r1(n);
for(i = 1; i <= n; ++ i) r1(a[i]);
r1(m);
for(i = 1; i <= m; ++ i) {
int L, c; r1(L, c);
for(j = 1; j <= c; ++ j) {
int x; r1(x); add(L, x);
}
}
for(i = n - 1; i >= 1; -- i) if(deg[i] == 0) for(j = head[i];j;j = edg[j].next) {
int to = edg[j].to; -- deg[to];
}
int ans(0);
while(1) {
int fl(1);
for(i = 1; i <= n; ++ i) f[i] = 0;
f[n] = 1;
for(i = n; i >= 1; -- i) {
if(a[i] >= f[i]) { a[i] -= f[i]; continue; }
if(!head[i]) { fl = 0; break; }
f[i] -= a[i], a[i] = 0;
for(j = head[i];j;j = edg[j].next) f[edg[j].to] += f[i];
}
if(!fl) break;
else ++ ans;
}
printf("%lld\n", ans);
return 0;
}

}


signed main() { return Legendgod::main(), 0; }//